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The contribution of this work is a control formulation for a mobile sensor to track a
target using an information-theoretic cost function based on a particle filter estimate of
the target state. The particle filter representation fully models the non-linearity and limited
field of view of the sensor and is able to search for a lost target by updating the estimate
to eliminate areas which have been searched. An entropy calculation is developed which
reflects the uncertainty of the particle filtering density for the purpose of tracking, and is
then combined with a sampling method to predict the expected entropy of the target state
estimate under a proposed control.

When sensor motion is constrained, such as for a fixed-wing aircraft, a long planning
horizon can provide better performance than single step planning approaches. Exact pre-
diction of information-theoretic costs for non-linear models is not generally feasible in real
time, and so approximate methods will be required to predict the expected estimate en-
tropy for receding horizon control. Simulation results demonstrate the accuracy of the
prediction method and the effectiveness of the information-theoretic control. Initial exper-
imental results verify the appropriateness of the particle filter for tracking a mobile target
from an unmanned aircraft.

Nomenclature

( )k time subscript
xk, Xk target state and domain
zk, Zk observation and domain
yk sensor platform state
uk sensor platform control input
p(xk+1|xk) target motion model as state transition probability
p(zk|xk) sensor model, conditional probability
zk = h(xk, yk) sensor model, stochastic function
yk+1 = g(yk, uk) platform motion model
p(Xk|z1, . . . , zk) state estimate distribution conditioned on all observations
wi

k, xi
k weight and state of particle i, time k

N (x;µ, Σ) normal distribution on x with mean µ and covariance Σ
H(p(X)) entropy of distribution
H(p(Xk|Z1, . . . , Zk)) expected entropy of filtering density
zs
k a sample drawn from p(Zk)

I. Introduction

Information-theoretic control for tracking seeks to minimize uncertainty in the estimate of the target
state by controlling sensor position. Such a formulation explicitly incorporates probabilistic target motion
and sensor models and is therefore especially suited for use with economical sensors or when the target
cannot be continuously observed.
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Much of the extensive previous tracking literature is based on deterministic formulations. For example
Spry et. al.1 formulate a control specifically for a fixed wing unmanned air vehicle (UAV) with a downward
looking camera to optimally revisit a target with constant velocity which is less than the UAV’s stall speed.
This control does not model uncertainty in the position of the target and so is not robust to unexpected
target maneuvers. It is also based on implicit sensor modeling (outside of the control design framework),
and so is not adaptable to changes in sensor mounting.

Probabilistic tracking formulations often assume that the target will be observed continuously. The
most computationally efficient algorithms are based on Kalman filtering, but are limited in their ability
to model non-linear and/or range-limited sensors. Campbell and Wheeler2 include extensive modeling of
uncertainty in both target motion and sensor observations, but assume that the presence of a gimballed
camera system will guarantee availability of detections. A sigma point filter representation allows non-linear
modeling, but is not able to update the estimate when the target is not detected. Kalman filter-based
approaches are also common in multiple target tracking applications with probabilistic data association,3

which require extremely efficient representation of a single target track due to the additional complexity of
the data association problem.

A general theme in probabilistic tracking control is the balance between computational efficiency and the
need to model a non-Gaussian, possibly multi-modal target estimate distribution. This need arises from the
fact that when the sensor platform is kinematically constrained and the target motion is either very agile or
uncertain, the target may be lost. In order to search for and reacquire the target, observations in which it
does not appear must be included in the estimate. Such ‘no-detection’ observations cause the estimate to
become extremely non-Gaussian, ruling out Gaussian-based filtering techniques such as the Kalman filter,
extended Kalman filter, and sigma point filter.

Webb and Furukawa4 develop a search and tracking controller for a camera mounted on a robot manip-
ulator which represents the target estimate distribution by discretization over a fixed grid, and is therefore
able to include the ‘no-detection’ observation. The objective is to maximize the probability of detecting the
target over a single-step horizon. The tradeoff between modeling and computational efficiency is seen from
the fact that the computational cost of calculating the control grows with the density of the grid, limiting
the accuracy of the estimate. The fixed grid is appropriate in this case because the search area is small, fixed
and known a priori. For tracking mobile targets, Lavis et. al.5 suggest a reconfigurable mesh which expands
to contain the target’s forward reachable set and thereby maintain the validity of the estimate PDF. Mesh
elements which no longer contribute to the PDF are removed, allowing the search space to move with the
target rather than growing indefinitely. However, this is quite computationally intensive.

The tradeoff between flexible representation and computational efficiency will be addressed in this paper
by choosing a particle filter representation for the target state estimate. The particle filter is able to represent
non-linear models and non-Gaussian multi-model estimate distributions by moving particles to areas of
high probability. The advantages of particle filtering for probabilistic tracking are well-known, but the
interpretation of a particle set representation for information-theoretic control is an area of current research.
Particle filtering will be further discussed in section II-B.

In section II the information-theoretic control formulation is developed in two parts: control and esti-
mation. The control formulation concentrates on derivation of an appropriate objective function for the
sensor platform motion control. The estimation section introduces the particle filter. Section III addresses
real-time feasible methods for approximating the objective function. Simulation and experimental results
are presented in section IV regarding both accuracy of the approximations from section III and control
performance, followed by conclusions in section V.

II. Control and Estimation Formulation

In traditional deterministic tracking formulations1,6 the output of the sensing algorithm is an estimate
of the target position. This estimate is regarded as truth from the standpoint of control and the desired
sensor platform position is calculated based on heuristics which attempt to produce continued observations.
For example, the heuristic for the downward-looking camera on a fixed-wing UAV is to fly over the target
position with zero roll angle. The control objective in the traditional tracking formulation depends only on
the sensor platform state and the best estimate of the target state, as shown in figure 1.

The information-theoretic control formulation is distinguished by the fact that the objective function is
an information measure on the target state estimate distribution. Rather than separating the estimation
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Figure 1. Traditional tracking control loop
Figure 2. Information-theoretic tracking control
loop

and control aspects of the system by controlling based on the best estimate (a certainty equivalence control),
the control is based on the full probability density function (PDF) of the target estimate and its relation
to platform motion, as shown in figure 2. Probabilistic models of target motion, sensor information gain,
and sensor platform motion are explicitly included. Modeling the effect of sensor platform control on the
evolution of the estimate PDF is challenging due to the many introduced uncertainties and the non-linear
nature of range-limited sensors. Andrieu et. al. discuss the complexity of this type of control, as well as
the application of sampling methods, in a very general formulation based on a partially observable Markov
decision process.7

The notation for estimation and control will be based on variables x related to the unknown target
state, y related to the platform state, and sensor observations z. The target state xk at discrete time k
is an unknown random vector in the continuous domain Xk. The estimate of xk is a conditional PDF
p(Xk|z1, . . . , zk) defined on Xk, also referred to as the filtering density. The observation zk is defined on
the domain Zk, which includes the observation zk = ∅, in which the target is not detected. The stochastic
observation model zk = h(xk, yk) is a function of both the current target state and the current sensor
platform state yk, and generates the conditional distribution p(Zk|Xk). The platform motion is governed by
a known deterministic model yk+1 = g(yk, uk), where uk is the control input. The goal considered in this
work is to minimize the filtering density uncertainty.

Estimate uncertainty will be measured using information entropy as defined by Shannon,8 which repre-
sents the uncertainty or randomness in the estimate of x.

H(p(X)) = −
∫

X

p(x) log p(x)dx (1)

H(p(X|Z)) =
∫

Z

p(z)H(p(X|z))dz (2)

The uncertainty measure on the estimate PDF will be defined by the expected entropy, H(p(Xk|Z1, . . . , Zk)).

A. Receding Horizon Information-Theoretic Control

The tracking objective is to provide an accurate estimate of the target position at all times. All knowledge
of the current target location at time k is represented by the filtering density p(Xk|z1, . . . , zk) provided by
any appropriate filter implementation. For a finite time interval from k = 0 to k = N − 1 an optimal control
sequence [u0, . . . , uN ] solves the following minimum entropy problem.

[u∗0, . . . , u
∗
N−1] = arg min

N∑

k=1

H(p(xk|Z1, . . . , Zk)) (3)

subject to
yk+1 = g(yk, uk)
zk = h(xk, yk) k = 0, . . . , N

However, real-time optimization over the duration of a task is not generally feasible, and a receding horizon
approach is often selected. In some cases, stability and performance guarantees can be produced for a
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receding horizon optimization by development of a Lypunov function based on the cost. Although there is
a large body of work in this area,9 it will not be attempted in the information-theoretic formulation due to
the complexity of the cost function.

A common approach in information-theoretic control problems is model-based receding horizon control
with a horizon of one step.10–12 This approach is referred to as information surfing because the sensor
platform follows the local gradient of information gain. However, a longer planning horizon has the potential
to provide better performance for sensors with limited range and constrained motion, especially when non-
minimum phase characteristics are present. For example, to move the downward-looking sensor footprint of
a fixed-wing UAV to the right, the footprint must first move left due to the aircraft bank angle dynamics.
This behavior is not accounted for by a single-step plan. Therefore, we consider a receding horizon of T − 1
control steps.

At the current time k, the entropy of the conditional distribution p(Xk+i|z1, . . . , zk+i) depends on the
(unknown) future observations {zk+1 . . . zk+i}. Thus, the control objective must be considered in expecta-
tion over the sequence of future observations {Zk+1, . . . , Zk+T }. The control objective considered over the
remainder of the paper is to minimize the expected entropy of the estimate distribution over the receding
horizon.

u∗ ≡ [u∗k, . . . , u∗k+T−1] = arg min Jk =
k+T∑

i=k+1

H(p(Xi|z1, . . . , zk, Zk+1, . . . , Zi)) (4)

subject to
yk+1 = g(yk, uk)
zk = h(xk, yk)

For a single sensor platform tracking a single target, the cost function can be minimized using non-linear
gradient search algorithms such as sequential quadratic programming.13 Due its complexity, it is assumed
that the cost function will be minimized using an appropriate optimization package using repeated function
evaluations for numerical approximation of the gradient. Therefore, the cost function must be calculated
efficiently for real-time optimal control.

B. Estimation Using Particle Filter

The proposed control formulation assumes the presence of a target state estimate PDF. A Sampling Impor-
tance Resampling (SIR) particle filter14 is chosen in order to represent arbitrary target estimate PDFs and
non-linear sensor and target motion models. The particle filter is a sub-optimal Bayes estimator based on
sequential Monte Carlo sampling, and is very popular for target tracking and simultaneous localization and
mapping applications.15,16 Unlike a grid or mesh representation which must either extend over all possible
target states or be reconfigured outside of the filtering algorithm,5 the particle set efficiently moves to follow
the target as a consequence of the filtering process.

In an optimal recursive Bayes filter, the prediction step applies a motion model p(Xk+1|Xk) to the current
estimate PDF p(Xk|z1, . . . , zk) via the Chapman-Kolmogorov equation.

p(xk+1|z1, . . . , zk) =
∫

Xk

p(xk+1|xk)p(xk|z1, . . . , zk)dxk (5)

The estimate is then updated according to observation zk+1 using Bayes rule and the sensor model p(Zk|Xk).

p(xk+1|z1, . . . , zk+1) =
p(zk+1|xk+1)p(xk+1|z1, . . . , zk)

p(zk+1|z1, . . . , zk)
(6)

Recursion of the prediction and update steps form the optimal estimate by providing the conditional dis-
tribution p(Xk|z1, . . . , zk) from the sequence of observations from time 1 to k. The recursion starts from a
prior distribution p(X0) which includes prior knowledge of the initial target state. The optimal filter can be
implemented exactly in restricted variations such as the Kalman filter or estimation of on a discrete domain
with a finite number of possible values.14 For arbitrary models, the optimal filter equations cannot be solved
analytically, but could be implemented approximately using quadrature techniques. However, more efficient
methods are required for real-time filtering and control.
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A particle set represents a distribution p(X) as a set of N weighted particles in the form of a sum of
Dirac delta functions located at the particle locations {xi}, where each particle represents a hypothesis from
the state space.

p(x) =
N∑

i=1

wiδ(x− xi) (7)

The particle filter approximates optimal recursive Bayes filtering by representing the distributions
p(Xk|z1, . . . , zk) and p(Xk+1|z1, . . . , zk) as sets of particles and applying the prediction and update steps
(5,6). The prediction step of the filter is implemented by resampling the particle locations according to the
target motion model. The new location xi

k+1 of particle i is a random sample drawn from the distribution
p(xk+1|xi

k) conditioned on the current particle location xi
k. The update step is implemented by updating the

particle weights using Bayes rule. The resampling step does not follow directly from the optimal Bayes filter,
but is required to avoid particle set degeneracy14 and has the effect of eliminating very unlikely particles
and replicating likely particles.

Although the particle filter is well-suited for estimating target motion, it is a challenging representation
for calculating information measures which will form the basis for control.

III. Approximation of Objective Function

The current cost Jk consists of expected entropy terms H(p(Xi|z1, . . . , Zi)) for future times i. The
observations {z1, . . . , zk} are known, and the expectation is taken over the future observations {Zk+1, . . . , Zi}.
The cost is expanded to explicitly show the expectation over future observations.

Jk =
k+T∑

i=k+1

∫

Zk+1,...,Zi

p(zk+1, . . . , zi|z1, . . . , zk)H(p(Xi|z1, . . . , zi))dzk+1 . . . dzi (8)

As described in the previous section, selection of an optimal control requires evaluations of the cost func-
tion for control sequences [uk, . . . , uk+T ].The expectation over {Zk+1, . . . , Zi} cannot be calculated exactly
due to lack of analytical expression for the joint distribution p(Zk+1, . . . , Zi|z1, . . . , zk). To calculate an ex-
pectation over a single observation, one could partition the domain Zk+1 into Nz discrete regions, calculate
their respective probabilities, and evaluate the entropy conditioned on a representative sample from each
region. However, the cost of this method grows exponentially with the length T of the observation sequence
as NT

z , and is therefore not feasible for real-time control. It is extremely inefficient because data points are
drawn uniformly from the observation domain.

Instead, we approximate the expectation by drawing random samples from the distribution
p(Zk+1, . . . , Zi|z1, . . . , zk) and replacing the expectation with the sample mean. This method allows a mul-
tiple step expected entropy prediction for tracking a moving target with a non-linear sensor, which has not
been seen in literature review. The method for drawing random samples from the future observation se-
quence is described in section A and the entropy calculation for a particular sample is developed in section
B.

A. Expected entropy calculation by drawing samples from predicted observation sequence

Each expected entropy term H(p(Xi|z1, . . . , Zi)) in the cost function will be replaced by a sample mean
based on random samples from p(Zk+1, . . . , Zi|z1, . . . , zk): observations between the current time and the
time i. The sampling procedure will make use of the hidden Markov problem structure shown in figure 3,
where state xk+1 is conditioned only on state xk and observation zk is conditioned only on state xk. A single
sample from p(Zk+1, . . . , Zi|z1, . . . , zk) is generated using the chain rule by first drawing a sample zs

k+1 from
p(Zk+1|z1, . . . , zk), followed by a sample zs

k+2 from p(Zk+2|z1, . . . , zk, zs
k+1), and so on. The hidden Markov

structure shows that the unknown state x must be marginalized at each step in the sample generation.

p(Zk+1, . . . , Zi|z1, . . . , zk) = p(Zk+1|z1, . . . , zk) . . . p(Zi|z1, . . . , Zi−1) (9)

p(Zi|z1, . . . , zi−1) =
∫

Xi

p(Zi, xi|z1, . . . , zi−1)dxi =
∫

Xi

p(Zi|xi)p(xi|z1, . . . , zi−1)dxi
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x1 x2 x3

z1 z2 z3

Figure 3. Hidden Markov model for target state and observations. Node x3 is marginalized to calculate
p(Z3|z1, z2) when z1 and z2 are observed.

The conditional state estimate p(Xi|z1, . . . , zi−1) is obtained from a particle filter estimate conditioned
on the preceding sampled observations; essentially a simulation of the estimation process. This process
is outlined in Algorithm 1, which draws a single random sample from p(Zk+1, . . . , Zk+T |z1, . . . , zk) and
calculates the associated sample cost Js

k .

Jk ≈
k+T∑

i=k+1

1
Ns

Ns∑
s=1

H(p(Xi|zs
1, . . . , z

s
i )) =

1
Ns

Ns∑
s=1

Js
k (10)

Js
k =

k+T∑

i=k+1

H(p(Xi|zs
1, . . . , z

s
i ))

Algorithm 1 Sample generation from observation sequence of length T
1: Begin with particle set representation of prior p(Xk|z1, . . . , zk)
2: i = 1
3: while i ≤ T do
4: Predict particle filter. Result is p(Xk+i|z1, . . . , z

s
k+i−1).

5: Sample zs
k+i from p(Zk+i|zs

k+1, . . . , z
s
k+i−1) using (9).

6: Update particle filter based on sample observation zs
k+i using (6). Result is p(Xk+i|z1, . . . , z

s
k+i).

7: Calculate entropy from particle set. Result is H(p(Xk+i|z1, . . . , z
s
k+i)).

8: Resample particle filter
9: i = i+1

10: Sample from observation sequence is [zs
k+1, . . . , z

s
k+T ]

11: Sample cost is Js
k = H(p(Xk+1|z1, . . . , z

s
k+1)) + . . . + H(p(Xk+T |z1, . . . , z

s
k+T ))

The two challenges in Algorithm 1 are the entropy calculation in line 7 and drawing the sample in
line 5. A sample is required from p(Zk+i|zk, . . . , zk+i−1), which is written in terms of the sensor model
p(Zk|Xk) and the particle filter estimate conditioned on the previous estimations. Substituting the particle
set representation from (7) replaces an integral over the target state domain with a summation over N
particles, where the particle filter locations and weights reflect all preceding observations.

p(zk|z1, . . . , zk−1) =
N∑

i=1

wi
kp(zk|xi

k) (11)

Many sensor models can be written in the form p(z|x) = N (z; µ(x), Σ(x)): a normal distribution with
mean and covariance dependent on x. In this case, the distribution p(Zk|z1, . . . , zk−1) is a Gaussian mixture
model (12), for which sampling techniques exist.17

p(zk|z1, . . . , zk−1) =
N∑

i=1

wi
kN (zk; µ(xi

k), Σ(xi
k)) (12)

Having drawn N samples from p(Zk+1, . . . , Zk+T |z1, . . . , zk) and calculated the resulting entropies, the
result is N samples from the distribution of

∑
H(p(Xi|Z1, . . . , Zi)). The expectation µ of the true distribu-

tion has been defined as the cost function Jk. Under proper (independent identically distributed) sampling
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conditions, it is well-known that the sample mean µN is an unbiased estimate of µ and with standard devia-
tion σ̂N = σN/

√
N − 1, where σN is the standard deviation of the sample set. A similar analysis can be used

to predict 3σ bounds for the realized conditional entropy relative to the predicted expected entropy. These
bounds are much wider because the uncertainty in the realization of each observation does not decrease with
the number of samples, as does the uncertainty in the cost prediction. Uncertainty bounds due to sampling
are shown in the simulations section.

The 3σ error bound for the true cost relative to cost estimated by sampling is required in order to gauge
the accuracy of the optimization. If the error bound is large compared to the cost difference between control
choices, then the control with the lowest predicted cost may not be optimal because the selection may be
dominated by the uncertainty. If a set of candidate controls {ui} are to be evaluated in order to select the
minimizer for J(u), σ̂N should be small compared to the differences between the costs {J(ui)}. Since this set
of costs is the result of the sampling procedure, an iterative process may be required to increase the number
of samples until the desired accuracy is reached.

B. Entropy from particle set representation

The second challenge in Algorithm 1 is to calculate the entropy of the filtering distribution represented by
the particle set. A particle set approximates a continuous distribution p(Xk|z1, . . . , zk) by a set of samples
(weighted dirac delta functions) such that the two distributions have similar cumulative density functions.
However, the particle set and the continuous distribution are very different in the context of the entropy
calculation.

An entropy calculation on any resampled particle filter will result in H = N log N due to the uniform
weights on the N particles. Similarly, an entropy calculation on the particle set before resampling will depend
only on the distribution of particle weights, corresponding to the most recent likelihood function p(zk|Xk)
rather than the entropy of the cumulative estimate. To calculate the entropy of the cumulative state estimate,
it is useful to form a continuous distribution which corresponds to the particle set representation.

Gaussian smoothing is a method for calculating information measures from a particle distribution by
convolving the particle distribution with a small-covariance Gaussian kernel to produce a continuous distri-
bution. For Gaussian motion models, the Gaussian smoothing method may produce a result similar to the
one developed here. However, in Gaussian smoothing the covariance of the Gaussian kernel must be selected
as a design parameter. The method presented here follows directly from the optimal Bayes filter and thereby
avoids the need to tune the choice of smoothing parameters. Instead, a continuous PDF at time k can be
realized very intuitively by applying optimal Bayes updates to the preceding particle set at time k − 1.

If the filtering density p(Xk−1|z1, . . . , zk−1) is given by the particle set {wi
k−1, x

i
k−1}, application of

optimal prediction and update steps (5,6) results in the following expression for a continuous PDF at time
k.

p(Xk|z1, . . . , zk) =
p(zk|Xk)

p(zk|z1, . . . , zk−1)

N∑

i=1

wi
k−1p(Xk|xi

k−1) (13)

Entropy calculation from this PDF would require numerical integration of an arbitrary function over the
domain Xk. The cost of quadrature grows quickly with the dimension of the domain, and may devote large
computational effort to integration over areas of small contribution. Instead, a piecewise linear approximation
of (13) over appropriately chosen regions could allow entropy calculation as a sum of analytical contributions
from each linear region.

In order to accurately represent the continuous distribution given by (13), the piecewise linear elements
must be strategically placed. An advantage of the particle filter is that it places particles in areas of high
probability, providing more detailed approximation in areas of higher contribution to the entropy calculation.
Taking advantage of this, we choose the particle locations {xi

k} to define the vertices of triangular elements.
The entropy calculation will be performed on the piecewise linear function f(x) defined by interpolation
between points {xi

k} with values f(xi
k) given by (13), where the normalization constant p(zk|z1, . . . , zk−1)

has been removed. The entropy contribution from each region is now an analytical function of the vertex
locations and their function values f(xi).

f(xi
k) = p(zk|xi

k)
N∑

j=1

wj
k−1p(xi

k|xj
k−1) (14)
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Figure 4. Illustrative example for derivation of a piecewise linear approximation of a PDF represented by a
particle set. Unnormalized PDFs are shown.
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Figure 5. Example for derivation of a piecewise linear approximation of a PDF represented by a particle set,
with artificial particles used to force zero-value in areas of low particle density. Unnormalized PDFs are shown.
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Figure 4 illustrates an example formulation of a piecewise linear approximation of the filtering density
beginning from the particle set representation of p(Xk−1|z1, . . . , zk−1). An unrealistically small number of
particles is shown for clarity. In subfigure (a), the motion model centered at each particle is summed to
form the prediction p(Xk|z1, . . . , zk−1). In subfigure (b), the prediction distribution is multiplied by the
likelihood function p(zk|Xk) and normalized to form the updated distribution. In subfigure (c), the updated
distribution is evaluated at each of the new particle locations, and the piecewise linear function is formed by
interpolation.

A final detail in defining the interpolated function is required to represent areas of low particle density.
Linear interpolation between particles which are far apart may not be desired. For example, in a very
bimodal distribution, there may be no probability mass in the area between the two modes. Accordingly,
the interpolated function should be driven to zero in locations which are far from any particle in a sense
defined by the motion model. The predicted distribution consists of a sum over the particles of the target
motion model centered at each particle location. The target state transition probability p(Xk|Xi

k−1) will
always tend toward zero with increasing distance ||xk−xi

k−1|| for a target with bounded velocity. Therefore,
a radius r(x) can be selected such that if ||xk − xi

k−1|| > r(xi
k−1) ∀i, then p(xk|k−1) < ε. For a Gaussian

motion model, this radius can be chosen to correspond to the 3σ bound. This is implemented in the linear
interpolation by placing virtual particles with f(xi) = 0 at distance r(xi) from the true particles, as shown
in figure 5.

IV. Simulations and Experimental Results

Results from a number of simulations and a flight experiment will be presented. In simulation 1, the
particle filter and corresponding entropy calculation are applied to duplicate the known solution of a problem
with linear models and Gaussian noise. This confirms that the entropy calculated from the piecewise linear
interpolated function is a good approximation to the entropy of the optimal Bayes estimate, in a case where
such an estimate is available. In simulation 2, non-linear models are introduced which prohibit the application
of a Kalman filter. A simple proportional controller based on the particle filter mean is adequate but does not
use the available motion models to form an optimal plan. Simulation 3 implements an information-theoretic
receding horizon control (RHC) for a simplified version of the scenario in simulation 2. The RHC produces
behavior similar to the solution which has been derived in the literature from an extended Kalman filter
representation. In simulation 4, information-theoretic RHC is applied for the scenario from simulation 2,
resulting in slightly improved performance. Finally, tracking data from a flight experiment is presented to
introduce future experimental work.

Simulation 1: Comparison to Kalman filter

The particle filter-based entropy calculation is first verified against a Kalman filter in one dimension. The
target motion model is a random walk with covariance Wm = 3, and the sensor model is linear with covariance
Ws = 1.

xk+1 = xk + wm (15)
zk = zk + ws

p(x0) ∼ N (0, 15)
wm ∼ N (0,Wm), ws ∼ N (0,Ws)

The Kalman filter estimate entropy is calculated from the posterior estimate covariance Z by H = log
√

2πeZ.
For particle filter implementations with 250, 500, and 1000 particles, entropy is calculated as described in
section B. Each trial simulates 100 filter iterations. The resulting root mean square (RMS) error is shown
in Table 1.

Simulation 2: Non-linear models, proportional control

A particle filter is implemented to track a target with terrain-dependent motion using a non-linear sensor
and a proportional heading rate control. When the target is on a road it has a known nominal velocity Vnom

parallel to the road in addition to random Gaussian motion. The time discretization is ∆ and the random
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Table 1. Root mean square error of particle filter entropy compared to Kalman filter, where steady state
entropy of Kalman Filter is 1.3

250 particles 500 particles 1000 particles
0.0557 0.0335 0.0124

velocity is Vt. When the target is not on a road Vnom = 0. This target motion corresponds to the following
model.

p(x0) = uniform (16)

p(xk+1|xk) = N (xk+1; xk + Vnom∆,Σ), Σ =

[
Vt∆ 0
0 Vt∆

]

The UAV motion is represented deterministically by a coordinated turn model with constant altitude
and bounded turn rate, where the UAV state y includes position (yx, yy) (in coordinates aligned with the
UAV heading), heading angle ψ and roll angle φ. The control input is u = ψ̇ and the constant UAV velocity
is Vu. This model is commonly used for control design for an autopilot-stabilized UAV.

yx,k+1 = yx,k +
Vu

ψ̇
sin(∆ψ̇) (17)

yy,k+1 = yy,k +
Vu

ψ̇
(1− cos(∆ψ̇))

φ = − arctan(
Vuψ̇

g
)

ψk+1 = ψk + ψ̇∆, |ψ̇| ≤ umax

The bearing-only sensor model (18) approximates monocular vision18 based on a noisy measurement of
the bearing from the UAV to the target. A sensor footprint F(y) is defined by the UAV state, modeling
a fixed downward-looking camera with limited field of view angle β. The probability of detecting a target
within the footprint is 1− Pmiss and the probability of detecting a target outside the footprint is zero.

p(z = ∅|x) = 1 ∀x /∈ F(y) (18)
p(z = ∅|x) = Pmiss ∀x ∈ F(y)

p(z = z̃ ∈ R|x) = 0 ∀x /∈ F(y)

p(z = z̃ ∈ R|x) = (1− Pmiss)N (z̃; x, σ2) ∀x ∈ F(y)

This model can easily be extended to include the possibility of false detections. A more accurate model for
monocular vision has also been developed and demonstrated in a two-UAV flight experiment19 and models
a resolution-dependent probability of detection. The various model constants are given in Table 2.

Table 2. Simulation parameters

Vt 5 meters per second Vu 20 meters per second
umax 0.2 radians per second g 9.8 meters per second2

∆ 1 second Pmiss 0.1
β 24 degrees σ 2.5 degrees

UAV altitude 150 meters number of particles 500
Vnom 15 meters per second

The first three plots of figure 6 show the progression of the UAV position, sensor footprint, and particle
distribution through the simulation. A proportional heading rate control steers the UAV toward the expected
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Figure 6. (Simulation 2) A simple proportional heading rate control drives the UAV toward the expected
target position based on the particle filtering density. The lower left figure shows predicted and realized
information-theoretic costs with associated uncertainty bounds.

target position calculated from the filtering density. The UAV footprint is seen to lie on the outside of the
UAV’s curved path as determined by the coordinated turn model. Iteration 6 shows how particles travel
quickly along the road but randomly otherwise. Iteration 18 shows where some possible target locations
have been eliminated before the target is found, resulting in a multi-modal distribution. This would not be
possible in a traditional Kalman filter-based tracking formulation. The target is observed in iteration 34,
and is known to lie near the edge of the sensor footprint because it was not seen in the preceding iterations.

The final plot of figure 6 shows the performance of this simulation with respect to the information
theoretic objective (4), which is predicted using the methods described in section III. The objective function
is a sum over the receding horizon of the expected entropy of the filtering density, referred to as predicted
E[H(P (X|Z))] in the figure. In this simulation, the prediction horizon is 6 steps of 1 second each. Therefore,
the expected entropy plotted at time t is a sum over the expected filtering entropy for times t + 1 to t + 7
(seconds). In contrast with the expected entropy prediction, the realized entropy referred to in the figure is
calculated after the observations have occurred. The realized entropy plotted at time t is a sum from t+1 to
t + 7 of the filtering entropy conditioned on the observations zk+1 to zk+7. Calculation of the error bounds
from the sample statistics was described in section III-A.

Simulation 3: RHC with random walk target model

This set of two simulations includes the same UAV and sensor model as in simulation 2 and a target model
which has been slightly simplified by removing the road. The two simulations differ only by the length of
the planning horizon, and show improved performance due to longer planning. The target model is as in
simulation 2 (16), except Vnom = 0. A control is selected from a uniform discretization of the UAV turnrate
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range to Nu values at each control step. The information-theoretic cost is calculated for each control sequence
candidate, and the control with the lowest predicted cost is applied. The control choice is further discretized
with respect to time by allowing each control to be held constant for a number of simulation steps Nc. This
allows the planning horizon to be extended to T simulation steps with the search space reduced to N

T/Nc
u

rather than NT
u , but sacrifices optimality due to the addition of extra constraints. An exhaustive search

method is chosen rather than an iterative method such as sequential quadratic programming because it is
difficult to detect stationary points due to the stochastic cost estimate. This may not be appropriate for a
multiple-input system because the dimension of the search space would grow more quickly with the horizon
length.

Figure 7 shows results of the two simulations which vary only in the control horizon. In the short horizon
simulation, the estimate entropy is predicted a single step (0.5 seconds) ahead. In the long horizon simulation,
the entropy is predicted 2 seconds ahead to form a 2 second plan in which each control is held constant for
two steps. The form of the planned control is [u1u1u2u2]. The longer planning horizon results in a path
which initially curves away from the target for better triangulation with the bearing-only sensor, and then
approaches it, resulting in less estimate uncertainty than the short horizon controller. This corresponds to
the known optimal behavior which can be derived from an extended Kalman filter formulation.20
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Figure 7. (Simulation 3) UAV paths generated by entropy-minimizing control for 2 second and 0.5 second
planning horizons (left). Comparison of resulting estimate entropy showing improved performance with longer
horizon (right).

Simulation 4: RHC with terrain-dependent target model

In this simulation, the receding horizon information-theoretic control formulated in section II is applied to
track the terrain-dependent target model first presented in simulation 2, using the same sensor model. The
first three plots of figure 8 show the UAV path, footprint, and particle filter estimate at various times in the
simulation. The planned UAV trajectory resulting from the selected control sequence is also shown.

The lower right plot of figure 8 shows the analysis used to select the optimal control at iteration 4. For
each of 25 candidate control sequences, the probability of detection and the expected information-theoretic
cost are calculated. (Recall that the information-theoretic cost is expected entropy summed over the planning
horizon.) Probability of detection is clearly not a useful metric because 6 of the 25 candidate controls predict
certain detection. The information-theoretic cost varies much more over the control space. At iteration four,
the target position is still quite uncertain, leading to large uncertainty in the expected entropy calculation.
As a result, the 3 σ bounds for the cost estimate are significant compared to the variation between one
control and another. In this case, it would have been advantageous to draw more observation samples in
order to more reliably choose the optimal control.

Figure 9 shows the predicted and observed information theoretic costs, corresponding to the similar plot
in figure 6 for simulation 2. Although these results are quite similar, the receding horizon control shows
slightly improved performance. The time-averaged cost under receding horizon control is 32.0 and the time-
averaged cost under proportional control is 35.2. The time-averaged uncertainties for each test are 1.7 and
1.5, respectively.
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Figure 8. (Simulation 4) UAV position, sensor footprint, and particle filter estimate throughout simulation
under receding horizon control. Lower right plot shows predicted cost versus control choice at iteration 4. For
each of 25 candidate controls, both information-theoretic cost and probability of detection are compared.
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Figure 9. (Simulation 4) Predicted cost compared to conditional entropy, with estimated 3 σ bounds, under
receding horizon control
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Flight experiment: particle filter estimate from UAV-mounted camera

In initial experimental work, a particle filter is implemented to estimate the position of a moving vehicle using
a camera mounted on an unmanned aircraft. A simple classifier is used to detect the truck in each frame,
and the sensor likelihood function is based on a pinhole camera model subject to aircraft state uncertainty.21

The target vehicle motion is terrain dependent and modeled as in simulation 2. The prior distribution for
the vehicle position is uniform over a 300 by 200 meter rectangle.

The first plot of figure 10 shows a video frame with the target present. In this initial experiment, video
was recorded onboard the UAV and post-processed. The upper right plot shows the particle distribution
before the target has been detected, where the center of the initial grid has been searched, and some particles
have traveled along the road. The searched area is centered to the right of the UAV’s path due to the bank
angle effect on the fixed camera. The lower left plot shows the particle distribution after that target has
been observed in a single frame. The few particles near the observed target location have high weight, and
all others have low weight, although they have not yet been eliminated. In the lower right, the target has
been observed in multiple frames and all particles are clustered in an area approximately 30 meters by 5
meters. The random target motion and the poor UAV state estimate prevent the target position from being
more tightly localized. Improved UAV state estimation will be critical for future experimental work.
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Figure 10. (Flight experiment) Raw video of target vehicle on runway, collected from UAV (upper left).
Particle filtering density before target detection (upper right), immediately after truck is detected (lower left)
and after many detections ( lower right)
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V. Conclusions and Future Work

Tracking control for a mobile sensor platform has been formulated as a receding horizon minimization
of the entropy of the target state estimate. A particle filter is able to incorporate non-linear motion and
sensor models, but requires a novel method to approximate the entropy of the estimate. A novel sampling
method is also developed to predict the expected estimate entropy over a planning horizon greater than one.
This is the only such control formulation known to the author which allows a moving target, non-Gaussian
estimate, and multiple step receding horizon.

Simulation results verify the accuracy of the entropy prediction and show performance gain due to a
longer planning horizon. A non-linear sensor and terrain-dependent target motion model are simulated,
and also implemented experimentally in a particle filtering application. Further simulation is planned to
study the tradeoffs between horizon length and control performance. The formulation and approximation
techniques presented here are also being applied to cooperative information-theoretic control,22 with further
development of the multiple-sensor problem as future work.
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