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Abstract— In this paper, we explore the surveillance of mul-
tiple waypoints by a constant velocity aircraft in the presence
of wind. It is assumed that the aircraft has a maximum turning
rate and that the wind is equal to a known constant plus
small possibly time varying components. The proposed strategy
consists of separate path planning and control algorithms. The
path planning is done by calculating the shortest time path
through all of the waypoints in the presence of a known constant
wind. During this step, the allowed turning rate is assumed to
be less than the actual maximum turning rate of the vehicle.
This algorithm produces a ground path that can be tracked by
the control algorithm. The control algorithm breaks the desired
trajectory into smaller sections which can each be approximated
by a polynomial. A spatial sliding surface controller is then used
to track each polynomial in the presence of the unknown wind
disturbances.

I. INTRODUCTION

Recent advances in sensor and vehicle technology have
made unmanned aerial vehicles (UAVs) a valuable new tool
for a variety of applications including search and surveil-
lance. By allowing these tools to be utilized more effectively,
research in path planning and trajectory tracking for UAVs
has the potential for real world benefit. This paper studies
one such problem of path planning and trajectory tracking
for the surveillance of multiple locations in the presence of
wind.

A. Related Work

The problem of path planning for mobile robots has been
widely studied in recent years. One commonly cited work
by Dubins solves the problem of travelling from an initial
position and orientation in the plane to a final position and
orientation with a bounded curvature [11]. These results were
later reproduced using optimal control methods [4], and the
synthesis of the paths was further characterized [5]. These
results have also been applied in higher level path planning
algorithms to visit multiple sites in the absence of wind [25],
[26] and to navigate around obstacles [1], [3]. Other work has
studied coordinated rendezvous of multiple unmanned aerial
vehicles [2]. The choice of the order to visit multiple points
has also been widely studied as the well known travelling
salesman problem. Recent results have studied this problem
for vehicles with kinematic constraints [23], [21].
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Since the ability to follow desired paths is essential to
any automated vehicle, the control problem of tracking a
path has also been widely studied. One common approach
is to represent the desired path with a time based trajectory
which can be tracked using a variety of nonlinear controllers
[12], [22] including sliding surface controllers [20], [27],
[7], [6]. This use of time varying trajectories in the two
dimensional plane requires at least two control inputs for the
vehicle, typically a velocity control and a steering control.
This problem is often addressed by decoupling the steering of
the vehicle and its forward velocity control. One approach is
to steer a vehicle to the desired path by defining polynomial
curves which are tangent to both the vehicle velocity vector
and the path [13]. A variety of sliding surface controllers
have also been designed to steer along gradient lines of a
potential field [14] or to drive the lateral distance to the
reference path to zero using linearized models [15], nonlin-
ear coordinate transformations [16], and reference heading
angles calculated by the normal distance to the path [9].
Several researchers have used spatial dynamics of the vehicle
to design controllers. One of these works introduces a spatial
Laplace operator to design a linear controller based on a
linearized model of the vehicle [8]. Other spatial approaches
include spatial integration for a PI controller [10] and the
use of feedback linearization on the spatial dynamics of the
vehicle [18].

B. Main Contributions

The contribution of this work is the design of a complete
system including both path planning and control algorithms
for the surveillance of multiple locations in the presence
of wind. It is assumed that the order to visit the locations
is known, eliminating the computational complexity experi-
enced in the travelling salesman problem. The path planning
approach is similar to the past work by others [25], although
this work accounts for the influence of the wind. The path
planning algorithm produces a reference path that is supplied
to the control algorithm. The control approach uses a novel
sliding surface controller based on spatial dynamics of the
vehicle. This approach is most similar to that of [18].

II. PROBLEM STATEMENT

The specific problem being considered is how to robustly
navigate a constant velocity aircraft with a bounded turning
rate from an initial position and orientation in the two dimen-
sional plane through an ordered set of n points, (xi, yi) in
the presence of an approximately known wind. The constant
velocity assumption is made to approximate a small UAV



with limited velocity control, although it also applies to any
aircraft travelling at its maximum speed.

A. Vehicle Kinematic Model

The vehicle dynamics are represented by the kinematic
model shown below. The control input of the aircraft, u, is the
turning rate, ψ̇, which is assumed to be bounded |ψ̇| < ψ̇max.
Va is the constant velocity of the aircraft, and VW is the
velocity of the near constant wind, with Va > |VW | at all
time instances.

x =




x
y
ψ


 ẋ =




Va cos ψ + VW x

Va sin ψ + VW y

u


 (1)

B. Wind Model

It is assumed that the vehicle has access to an estimate of
the wind, V̂W. The actual wind, which can be time varying,
is equal to the wind estimate plus an unknown component,
∆W:

VW =
(

VW x

VW y

)
=

(
V̂W x + ∆W x

V̂W y + ∆W y

)
= V̂W + ∆W (2)

Although the wind is not exactly known, it is assumed that
both the unknown component of the wind and the time
derivative of the unknown component are both bounded, and
that the bounds are known:

|∆w|max < β

|∆̇w|max < γ
(3)

where β and γ are known positive constants.

III. PATH PLANNING

The objective of the path planning portion of the algorithm
is to define a spatial trajectory through each waypoint that
the aircraft can robustly track in the presence of the unknown
wind disturbances, ∆w. In order to account for the presence
of the unknown components of the wind and any unmodelled
dynamics, a turn-rate value, ψ̇plan, less than the actual
maximum turn rate, ψ̇max, is used for this optimization
problem:

ψ̇plan = αψ̇max (4)

where α < 1. It is then assumed that the wind is exactly
known (∆W i = 0). The optimal time path in the presence
of a constant wind (V̂W x, V̂W y) with a turn-rate constraint,
ψ̇plan, is then found. Since the path is calculated using this
relaxed turning rate constraint, the aircraft has additional con-
trol authority to track the path in the presence of uncertainty.

A. Minimum Path Between Consecutive Points

Before addressing the problem of finding the mini-
mum time path through several waypoints, we first address
the problem of finding the minimum time path between
two consecutive points xi = (xi, yi, ψi) and xi+1 =
(xi+1, yi+1, ψi+1). In our previous work [19], we showed that
this problem of finding an optimal path in the presence of a
constant wind can be re-expressed as one without wind where
the second position is treated as a virtual moving target. The

velocity of this virtual target is equal and opposite to the
velocity of the wind. By expressing the problem in this way,
ignoring the unknown component of the wind, the equations
of motion for the aircraft become:

x =




x
y
ψ


 ẋ =




Va cosψ
Va sin ψ

u


 (5)

where x(0) = xi. The state of the virtual target, xd, can be
expressed as:

xd(t) =




xi+1 − V̂W xt

yi+1 − V̂W yt
ψi+1


 (6)

The goal of this redefined problem is to find
the minimum time, T , such that x(T ) = xd(T ).
It was also shown in [19], that the optimal
aircraft path must be one of eight possible types:
RSR, LSL, RSL, LSR, LRLouter, RLRouter, LRLinner,
and RLRinner. For these eight path types, R denotes a
maximum rate right turn, L denotes a maximum rate left
turn, and S denotes a straight line. The outer subscript
indicates that the angle of the center curve is greater than
π, while the inner subscript indicates that the angle of the
center curve is less than π. Unlike the well known set of
Dubins paths [11], the inner paths are never optimal in
the case of no wind. For applications where the distance
between waypoints is large compared to the turning radius
of the vehicle, the optimal path will consist of types
RSR, LSL, RSL, and LSR.

Since the virtual target is travelling in a straight line, any
point on this line can be represented by a single value, d,
which is the distance from that point to the initial position of
the moving target, xi+1. In order to find the smallest value
of d at which the aircraft can intercept the virtual moving
target (equivalent to finding the smallest time of intercept,
T ) a function Gi(d) can be defined for each of the eight path
types listed above. Each function is equal to the difference
in time required by the aircraft, Tai(d), to travel to the point
d at the given orientation using the given path type, and the
time required by the virtual target to travel to that point,
Tvt(d):

Gi(d) def= Tai(d)− Tvt(d) (7)

Since not every path type is possible for every initial and final
state of the aircraft, the functions Gi(d) are not defined for
all values of d, although they are piecewise continuous where
they exist. The minimum time path to intercept the virtual
moving target can be found by calculating the points where
each Gi(d) function equals zero. The smallest of these values
corresponds to the optimal interception of the moving target,
and subsequently the optimal path to travel to the desired
position and orientation in the presence of a constant wind.
A schematic of the use of the virtual moving target approach
is illustrated in Fig. 1.
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Fig. 1. Finding optimal path in wind using virtual target approach

B. Minimizing Total Path Length

Given the ability to find the optimal path between two
points, the more complicated problem of finding the optimal
path through several points can be addressed. The cost
function for this optimization problem, J , is the total time to
travel from the initial position and orientation, x0, through n
target waypoints. This total time can be expressed as the
sum of the times required to travel between each set of
consecutive waypoints:

J =
n∑

i=1

Ji (8)

where Ji is the time required to travel from waypoint i−1 to
waypoint i on the optimal path. If the orientation angle, ψi, is
fixed at each waypoint, the Ji values can each be calculated
using the strategy described in the previous subsection. This
allows each Ji value to be expressed a function of the
orientation angles ψi−1 and ψi. Thus, as shown in [25],
which explored path planning in the absence of wind, the
time of total path time can be found by optimizing over the
orientation angle at each waypoint:

J = min
ψ

n∑
i=1

Ji(ψi−1, ψi) (9)

where ψ is the vector of orientation angles at each waypoint:

ψ = (ψ1, ψ2, ..., ψn) (10)

This problem can be solved using a variety of existing
gradient descent optimization techniques. This work uses the
FMINSEARCH function in MATLAB, which utilizes the
simplex method [17]. Since the cost function in Eq. 9 is
highly nonlinear, it is possible for the optimization to result
in a local minimum. It was shown in [25] that most of these
local minimum result from an orientation angle converging at
a value near π from the actual minimum value. This results in
turn angles greater than π at that point. They addressed this
problem by flipping the orientation angle at any point with a

(x
i−1

,y
i−1

) 

(x
i
,y

i
) 

(x
i+1

,y
i+1

) 

θ
i1

 

ψ
i

θ
i2

 

Fig. 2. Choice of initial angle for nonlinear optimization.
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Fig. 3. Example of ground path through multiple waypoints.

turn angle greater than π and rerunning the optimization to
check for improvement. During this study, it was also found
that this problem could be largely avoided by the choice of
the initial guess, ψ̂, for the nonlinear optimization:

ψ̂i = θi1 + 1
2
∆θi

θi1 = atan2 (yi − yi−1, xi − xi−1)
θi2 = atan2 (yi+1 − yi, xi+1 − xi)
∆θi = θi2 − θi1, ∆θi ∈ [−π, π)

(11)

This angle choice is illustrated in Fig. 2.
After the optimization in Eq. 9 is performed, the optimal

maneuvers found using the method in Sec. III-A can be
simulated in the presence of the known constant wind,
(V̂W x, V̂W y), to produce a target ground path which is in
the form of many closely spaced points and the orientations
at those points. An example schematic of a ground path is
illustrated in Fig. 3.

IV. CONTROL

The output of the path planning algorithm is an ideal
path that would allow the aircraft to travel through the
desired waypoints using constant rate turns and straight lines
assuming that the wind is exactly known and constant, and
that the kinematic model is an exact representation of the
aircraft dynamics. In reality, the wind will not be exactly
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Fig. 4. Segmentation of target path.

known, and there will be unmodelled vehicle dynamics.
Since the ideal path was calculated assuming a turning rate
smaller than the actual maximum turning rate, the aircraft
has extra control authority to track the desired ground path.

A. Segmentation of path into local polynomials

In order to devise a control law to track the desired
path outputted by the path planning algorithm, an analytical
function describing the path must first be produced. The
chosen approach is to break the larger path into shorter path
segments that can each be fitted with a polynomial. These
path segments are chosen so that the maximum change in the
orientation angle, ∆ψ, is bounded on each segment. Since the
output of the path planning algorithm is a set of path points,
(xp, yp, ψp), this can be achieved by growing each segment
until the difference between the maximum and minimum
orientations on that segment is equal to the bound, ∆ψ. A
new segment is then started and the process is repeated until
the end of the total path is reached. This segmentation of a
path is illustrated in Fig. 4, which illustrates the points where
a larger path is segmented for various values of ∆ψ.

Once the segments are created, a best fit line is found
for the set of path points in each segment. Since the path
is smooth, and the orientation along the path is bounded,
there are no outliers when fitting this line, and the errors are
relatively small. Thus, standard least squares can be used to
fit the line. This line is used to define a rotation angle, θR,
where the direction of the angle is along the direction of
motion of the aircraft. Further, an offset position, (x̄p, ȳp)
is defined as the centroid of the points in the path segment.
The coordinates of the path points are then mapped into a
local coordinate system, (xL, yL), centered at (x̄p, ȳp) with
the local x axis aligned with θR. This line fitting process is
illustrated in Fig. 5. The coordinates in this local system can
be calculated as:

[
xL

yL

]
=

[
cos θR sin θR

− sin θR cos θR

] ([
x
y

]
−

[
x̄p

ȳp

])

(12)
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Fig. 5. Local coordinate system.

After rotating the points to the local coordinate system, a
polynomial of degree np is fit to the segment points using
least squares. This polynomial is used to defined the local
desired position, yLd:

yLd = a0 + a1xL + a2x
2
L + ... + anpx

np
L (13)

B. Spatial Sliding Surface Control

In order to track the individual polynomial path segments
calculated above, a spatial sliding surface controller is used.
This type of controller is a variation on time based sliding
surface controllers which uses spatially defined dynamics
instead of time based dynamics in order to avoid singularities
in the control law. Since the desired paths are redefined in a
local coordinate system, the local position must be calculated
using Eq. 12. The orientation and wind estimates must also
be transformed into the local coordinate system:

ψL = ψ − θR[
V̂W Lx

V̂W Ly

]
=

[
cos θR sin θR

− sin θR cos θR

] [
V̂W x

V̂W y

]
(14)

The first step in the design of the controller is the definition
of the spatial dynamics, assuming a constant wind, with
respect to the local position variable, xL, instead of time:

d

dxL




xL

yL

ψL


 =




1
(Va sin ψL + V̂W Ly)/(Va cos ψL + V̂W Lx)

u/(Va cosψL + V̂W Lx)




(15)
Since the polynomials that will be tracked are designed to
be shallow, the perpendicular distance to the target trajectory
is approximately equal to the difference between the yL

position of the vehicle and the calculated yLd(x) value. Thus,
the tracking error, e is defined as:

e = yL − yLd(x) (16)

A spatial sliding surface, s is then defined as:



s =
de

dxL

+ λe (17)

where λ is a positive constant. Unlike time based sliding
surfaces, this surface is defined using spatial derivatives. The
goal of the sliding surface controller is now to drive the value
of s to zero. If this is achieved, the dynamics of Eq. 17 will
result in the exponential decay of the error:

e(xL) = e(x0) exp [−λ(xL − x0)] (18)

By defining the sliding surface using the proper order, the
derivative of the sliding surface with respect to xL is an
explicit function of the control input, u:

ds

dxL

= Γ1u− d2yLd

dx2
L

+ λ

(
Va sin ψL + V̂W Ly

Va cosψL + V̂W Lx

− dyLd

dxL

)

(19)
where

Γ1 =
V 2

a + Va(V̂W Lx cos ψL + V̂W Ly sinψL)
(Va cos ψL + V̂W Lx)2

(20)

Thus we can chose u to satisfy:

ds

dxL

= −Ks (21)

where K is a positive constant. This smooth control law will
drive the sliding surface s exactly to zero in the absence of
uncertainties or to a small boundary layer around zero in the
presence of uncertainties. The final control law is:

u =

[
d2yLd

dx2
L

− λ

(
Va sin ψL + V̂W Ly

Va cos ψL + V̂W Lx

− dyLd

dxL

)
−Ks

]
Γ2

(22)
where

Γ2 =
(Va cos ψL + V̂W Lx)3

V 2
a + Va(V̂W Lx cos ψL + V̂W Ly sinψL)

(23)

This control law requires that the first and second spatial
derivatives of the desired path be known. Since all of the
desired paths are fitted with polynomial functions, shown in
Eq. 13, these values can be easily calculated:

dyLd

dxL

= a1 + 2a2xL + 3a3x
2
L + ... + npanpx

np−1
L (24)

d2yLd

dx2
L

= 2a2 + 6a3xL + ... + np(np − 1)anpx
np−2
L (25)

TABLE I
SIMULATION PARAMETERS.

Parameter Value
Va 1 units/sec

ψ̇max 1.5 rad/sec
V̂Wx -0.3 units/sec
V̂Wy 0 units/sec

∆W1, ∆W2, ∆W3, ∆W4 0.05 units/sec
ωW1, ωW2 2π rad

φW π/2 rad
ψ̇plan 1 rad/sec
∆ψ π/4 rad
np 7
K 30
λ 10

V. SIMULATION RESULTS

In order to evaluate the path planning and control algo-
rithms, the complete system was tested using simulation.
The unknown wind component was modelled as the sum
of constants and sinusoids with unknown magnitudes and
frequencies:

[
∆W x

∆W y

]
=

[
∆W1 + ∆W2 sin (ωW1t)

∆W3 + ∆W4 sin (ωW2t + φW )

]
(26)

The performance specifications and wind values used in
this simulation are listed in Table I. These values cor-
respond to a constant wind value which is roughly 25%
the velocity of the vehicle, a 17% error in the estimate
of the constant wind magnitude, and wind gusts with an
amplitude of 24% the velocity of the constant wind. More
rigorous theoretical bounds on the tracking error can be
calculated from the maximum uncertainty values in Eq. 3,
using standard techniques [24]. Despite these disturbances,
the aircraft distance from the desired path remains within
less than 6% of the minimum turning radius of the vehicle.
The simulated path of the vehicle is shown in Fig. 6. The
performance of the controller, including the tracking error,
sliding surface value, and controller input are illustrated in
Fig. 7. The discontinuities in the controller inputs result from
the switching between local controllers for the various path
segments.

VI. CONCLUSIONS AND FUTURE WORK

A complete system including both path planning and con-
trol algorithms for the surveillance of multiple locations in
the presence of wind has been presented. The path planning
algorithm calculates the shortest time path through all of
the waypoints using a turning rate which is less than the
actual maximum turning rate. This algorithm produces a
ground path that can be tracked by the control algorithm. The
control algorithm breaks the desired trajectory into smaller
sections which can each be approximated by a polynomial.
A spatial sliding surface controller is then used to track
each polynomial in the presence of the unknown wind
disturbances. The complete system has been demonstrated
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using simulation and shown to be robust against uncertainties
in the wind estimate.

The next major step in this research is the flight testing
of the proposed algorithms on one of our experimental
fixed-wing aircraft. Each aircraft flies under the combined
control of an off-the-shelf Piccolo avionics package and an
onboard computer. The Piccolo performs low level control
and provides GPS measurements and wind estimates. The
onboard computer runs higher level algorithms and can
provide the Piccolo with turn rate commands. These aircraft
travel at a nominal speed of 20 m/s, and wind speeds of over
5 m/s have been encountered during flight testing. Further
theoretical work could include the inclusion of variable
vehicle speed, calculation of optimal waypoint ordering, and
dynamic updating of the path in the presence of changes in
the wind estimate or waypoints.
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