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Abstract— This paper studies several problems of search in
the two-dimensional plane for a mobile intruder or evader. In
each case, both the searcher and evader are assumed to have
bounded velocities, with the velocity of the searcher greater than
that of the evader. The searcher has a sensor with a circular
footprint which allows it to detect the evader if its distance is
less than the sensor radius. Unlike much of the past work done
in search theory, the proposed strategies make no assumptions
about the motion of the evader, and are guaranteed to succeed
for any trajectory of the evader. The three problem formulations
studied include the search for mobile targets through a linear
corridor, the search for or bounding of a mobile target which
starts inside of a circular region, and the prevention of a mobile
target from entering a circular region. The extension of the
proposed strategies for multiple searchers is also discussed.

I. INTRODUCTION

This paper studies several problems of search in the
two-dimensional plane for a mobile intruder or evader. It
is assumed that the searcher and the evading target have
maximum velocities, Vs and Vt, with Vs > Vt. No restrictions
are placed on the maximum turning rates of either party.
The searcher is assumed to have a sensor with a circular
footprint of radius Rs which will detect the target if the
target is inside of the sensor footprint. Unlike much of the
past work done in search theory, the proposed strategies
make no assumptions about the motion of the evader, and
are guaranteed to succeed for any trajectory of the evader.
The problem formulations given, although abstracted, have
potential application for a wide variety of practical problems
including border and harbor patrol, convoy protection, and
search and rescue operations. The first problem involves the
search for mobile targets through a corridor bounded by
parallel lines. The second problem explores how to search for
or trap a mobile target whose initial position is known to be
within a circle of known radius greater than the sensor radius.
The final problem, which is very similar to the second,
explores how to create a perimeter around a fixed point
in the plane in order to prevent intruders from approaching
the point without being detected. The major contribution of
this paper is a strategy for searching the circular regions,
which is an improvement to a similar strategy outlined in
[15]. While the proof of optimal strategies is difficult for
these problems, it is argued that the optimal strategy must be
close to the proposed solution. This is done by reducing the
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search problem to the simpler problem of travelling around
an expanding circle for which the optimal solution can be
found. It is also shown how these strategies can be executed
by teams of multiple searchers to improve performance.

There has a large amount of research into search theory
dating back to WWII, including several books devoted to the
topic [7], [2], [11]. Many search problems are also closely
related to game theory [10]. One major group of problems
involves the search for stationary or quasi-stationary tar-
gets. Baeza-Yates outlined optimal methods for searching
for stationary points or lines in planar grids [6]. Several
researchers have studied optimal trajectories to completely
cover an area with a sensor or tool with minimal overlap
between passes [9], [1], [5], [13]. Search problems with
mobile targets can be further classified by the intention
and information of the target. In the rendezvous search
problem, both players cooperate to find one another [3].
In the helicopter and submarine problem, first proposed by
Danskin [8], a helicopter searches for an evading submarine
that does not know the position of the searcher. Several other
researchers have studied the same problem [18], [16], [19].
Another study examines guaranteed search strategies for an
evader in an complex enclosed workspace by a searcher with
a line of sight sensor [12]. More recently, search with teams
of cooperating agents has become an active research topic
[14], [17], [4].

II. SEARCH OF A CORRIDOR
The first planar search problem considered is the patrol

of a corridor between parallel borders separated by width
W. This problem was solved by Koopman [11] in the 1940s
in order to determine optimal patrol strategies for aircraft
searching for ships in a channel. It is reviewed here since
the concepts used to solve this problem are later shown to
be applicable to more difficult search problems in the plane.
The corridor search problem assumes that at the initial time,
the set of all possible positions of the target, which we shall
refer to as the target set, is the area to one side of a line
perpendicular to the borders of the corridor. The searcher
begins on one of the corridor borders with its circular sensor
tangent to the boundary of the target set as shown in Fig. 1a.
Since the evader is mobile, the target set grows normal to its
boundary at the maximum velocity of the evader, Vt. Thus,
in order to keep its sensor tangent to the border of the target
set, the searcher must travel at an angle φ to the normal of
the target set (Fig. 1b), where φ is calculated as:

φ = arcsin
(

Vt

Vs

)
(1)
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Fig. 1. Corridor Patrol Strategy.

By following this strategy, when the searcher reaches the
opposite border, the boundary of the target set is still a line
perpendicular to the borders, although the searcher is now
outside of the target set (Fig. 1c). The searcher next travels
parallel to the border until it is again over the target set,
and its sensor is tangent to the boundary of the target set
(Fig. 1d). The searcher then repeats the same maneuver to
return to the opposite border, completing one cycle of the
maneuver. The time required for the searcher to complete
each half cycle, ts1, is the sum of the times required to cross
the corridor and the time to travel up the border.

ts1 =
W

Vs cos (φ)
+

2Rs

Vs + Vt

=
W√

V 2
s − V 2

t

+
2Rs

Vs + Vt

(2)

If the travel time of the searcher for each half cycle is equal
to the time required for the evader to travel the width of the
search sensor, the boundary of the target set at the beginning
of each half cycle will remain stationary.

W√
V 2

s − V 2
t

+
2Rs

Vs + Vt

=
2Rs

Vt

(3)

Koopman referred to this case as a symmetric barrier.
Solving for the width of the corridor in this case gives the
maximum width of a corridor that can be patrolled:

W ∗ = 2Rs

(
1
Vt

− 1
Vs + Vt

) √
V 2

s − V 2
t (4)

If the corridor width is larger than W ∗, the size of the target
set will grow after each cycle, and it cannot be guaranteed
that the target will be detected. If the width is less than
W ∗, the target set will shrink, allowing it to be searched.
Koopman called these cases retreating element barriers and
advancing element barriers respectively.

III. CIRCULAR BARRIERS AGAINST FLEEING
EVADERS

Another problem to consider is how to search for or bound
an evader that starts within a known circular region. This

problem could have applications for embargoes, patrolling
jail perimeters, or search for mobile targets. Assuming the
target is initially inside a circle of radius Rto, and the
searcher is outside of this circle with its sensor tangent
to target set, we explore how the searcher should travel
to guarantee that the target set is bounded for the largest
possible initial circle with radius R∗

to. For all circles smaller
than this, the bounding strategy should also provide a method
to shrink the area target set to zero in order to guarantee
capture. This is analogous to the advancing barrier for the
channel patrol problem.

A. Upper Bound for R∗
to

Since the optimal solution for the guaranteed search of an
expanding disk is unknown [7], a good first step to exploring
this problem is to set bounds on R∗

to. One such bound can be
found by assuming that the searcher can apply its maximum
search rate arbitrarily in the plane. For the problem under
consideration, the maximum search rate is the product of
the search velocity, Vs and the width of the sensor, 2Rs. The
growth rate of the target set can be calculated as the product
of its perimeter, 2πRto, and the velocity of the target, Vt.
The maximum radius of the target set for this unconstrained
problem, which acts as an upper bound for our problem, can
then be found by setting the search rate equal to the growth
rate of the target set.

R∗
to ≤

RsVs

πVt

(5)

B. Circular Search Pattern

One simple strategy to bound an evader, which has been
offered by several researchers [11], [16], is to travel a simple
circular pattern. Both of these studies calculate the largest
circle that can be bounded using a circular pattern to be:

R∗
to = Rs(Vs/πVt − 1) (6)

This equation is found by setting the time for the searcher
to travel around this circle 2π(R∗

to + Rs)/Vs to be equal to
the time it takes the evader to travel across the diameter of
the search sensor 2Rs/Vt. One limitation of this calculation,
however, is that it assumes that the evader is travelling
radially from the center of the circle. The optimal path of the
evader is actually to travel at a slight angle, γopt to the radius
of the circle as illustrated in Fig.2. This optimal angle γopt
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Fig. 2. Optimal Evasion Strategy Against Circular Search Path.



can be calculated by maximizing the quantity dRt/dθrel:

dRt

dθrel

=
Ṙt

θ̇p − θ̇t

=
Vt cos (γ)

Vs/Rp − Vt sin (γ)/Rt

(7)

where Rt is the radius of the evading target, Rp is the radius
of the searcher, and θrel is the relative angle between the
searcher and evader. The optimal choice of γ to maximize
dRt/dθrel is:

γopt = arcsin
(

VtRp

VsRt

)
(8)

Although travelling at γopt reduces the radial velocity of
the target, it forces the searcher to travel more than a full
circle to catch the target. Thus if the evader follows the path
specified by Eq. 8, it can escape the circle defined by Eq. 6.
Although the circular search path is simple, it is not optimal,
and it doesn’t lend itself to a method of reducing the target
set for Rto < R∗

to.

C. Proposed Pattern to Search Expanding Disk

The goal of the search of the expanding disk problem
can be reexpressed as the reduction of the area of the target
set, AT S , to zero in the minimum time. Since an analytical
solution to this problem is difficult because of the partial
information of the evader’s position, an approach is taken to
develop a strategy based on insight from similar problems.
Since intuition can often be wrong, the performance of the
developed strategy is compared against the theoretical bound
on the optimal strategy in Eq. 6. First, we explore the
instantaneous rate of change of the target set area which can
be calculated as the difference between the growth rate of
the target set resulting from possible target motion and the
reduction of the target set area by the motion of the searcher:

ȦT S = VtPT S − VsLS⊥ (9)

where PT S is the perimeter of the target set and LS⊥ is the
width of the sensor footprint perpendicular to the velocity of
the searcher that is over the target set. The maximum value of
LS⊥ is the width of the sensor, 2Rs. While minimizing ȦT S

is difficult because PT S and LS⊥ are complicated functions
of the chosen trajectory, several important properties for a
well designed strategy can be inferred from Eq. 9.

Property 1: The well designed search strategy should
travel along the perimeter of the target set.

In order to minimize the value of ˙AT S , the search strategy
should also minimize the perimeter of the target set, PT S .
If the searcher were to travel into the target set as opposed
to along the perimeter, it would create a channel that would
greatly increase the perimeter of the target set. This property
eliminates divide and conquer type strategies from being
considered for search of the circle.

Property 2: The target set should remain near circular
when the well designed search strategy is applied.

For any given planar area, the shape enclosing that area
with the smallest perimeter is the circle. Thus search strate-
gies that preserve the circular shape of the target set will
be superior to those that do not. This property eliminates
strategies such as line sweeps from being considered.

θ = 0 

Fig. 3. Minimum length path around expanding circle.

Property 3: The outer edge of the search sensor should
be tangent to the boundary of the target set during most of
the well designed search.

From Property 1, it was found that the searcher should
travel along the perimeter of the target set. If the search
sensor is tangent to the boundary of the target set, LS⊥ will
equal its maximum value.

In order to develop a search strategy which accounts
for the above properties, we consider a simplified problem.
Consider a mobile agent, travelling at a constant speed, Vs,
that must travel around an expanding circle in the plane. The
radius of the circle expands linearly in time at a rate of Vt.
At the initial time, the agent is at θ = 0, and its distance
from the center of the circle is greater than the initial radius
of the circle. The minimum length (and thus time) path that
the agent can take to travel around the expanding circle is
to first travel a straight line that will intersect the expanding
circle tangentially and then to travel along the perimeter of
the expanding circle. This path is illustrated in Fig. 3. The
solution to this simplified problem can be slightly modified
to produce the improved search method, illustrated in Fig. 4.
This search strategy consists of alternating straight lines and
outward spiral maneuvers of the searcher, which result from a
single rule that governs the velocity direction of the searcher.
At the initial time, the searcher begins outside of the target
set with its sensor radius tangent to the circular target set.
From this point forward, at each instance in time, a line is
drawn which is tangent to both the search sensor and the
outside of the target set, as shown by the dotted line in
Fig. 4a. The searcher then travels at an angle φ to this line,
which is the same lead angle calculated in Eq. 1. During the
first portion of the search, this produces a linear motion of the
searcher. Once the outside of the sensor footprint becomes
tangent to the circular portion of the target set (Fig. 4b), the
tangent line to the search sensor and the target set is tangent
to both at the same point. As the searcher continues to travel
at a lead angle φ to this tangent line, it will travel along an
outward spiral such that the radial velocity of the searcher
is equal to the target velocity:

Ṙp = Vs sin (φ) = Vt (10)

θ̇p =
Vs cos (φ)

Rp

=

√
V 2

s − V 2
t

Rp

(11)

where Rp and θp are the radius and angle of the searcher
with respect to the center of the target set.



φ 

V
s
 

V
t
 

Target Set

Target Set 

V
s
 

V
t

φ 

(a) (b)

Target Set 

V
s

φ

V
t

φ 
V

s
 

Target Set

V
t

(c) (d)

Fig. 4. Proposed pattern.

The searcher continues this spiral maneuver (Fig. 4c) until
it reaches the small arc which connects the circular and
linear portions of the target set (Fig. 4d). At this point, the
search travels along a smaller outward spiral using the same
lead angle strategy. Following the search strategy described
above will produce a target set whose perimeter can be
divided into four sections as shown in Fig. 5. The first
section, A-B, is a linear section. The second section of the
perimeter, B-C, defines the arc of a circle whose radius,
(R1), is equal to the radius of the searcher minus the sensor
radius. The third section of the perimeter, C-D, defines the
arc of a circle whose radius, (R2), is equal to the radius
of the searcher plus the sensor radius. The final section of
the perimeter, D-A, is the arc of a smaller circle which
connects the linear section, A-B, and the larger circle, C-
D. During the initial stages of a search, while the target
set is large enough, the radius of the D-A section, R3, will
be greater than the radius of the search sensor, Rs, when
the searcher reaches this section of the perimeter. During
these cases, the outside of the search sensor will always be
tangent to the edge of the target set and the search path will
be differentiable. When the target set gets smaller however,
the search sensor will completely cover the D-A section of
the perimeter. In these cases, the rule described above will
produce a sharp change in the direction of the searcher. When
this condition occurs, there is a modification to the search
strategy that can slightly improve performance. The diameter
of the sensor which is perpendicular the line tangent to the
sensor and target set can be used to define the point P ∗ as
illustrated in Fig. 6a. Whenever this point P ∗ is outside the
target set, the searcher can improve performance by travelling
radially inward toward the center of the target set until
P ∗ touches the target set (Fig. 6b). This modification can
also be used at the beginning of the search effort (Fig. 4a).
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Fig. 5. Sections of target set.
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Fig. 6. Marginal improvement to strategy.

Although this modification can provide a small improvement,
it complicates the motion and will not considered when
calculating the performance of the proposed method.

In order to determine the largest initial radius of the target
set that can be bounded, R∗

to, using the proposed pattern, it
assumed that R3 in Fig. 5 is equal to zero. This conservative
assumption results in a slightly smaller R∗

to than is actually
achievable, although it greatly simplifies the calculation. The
path of the searcher can now be divided into two portions:
the straight section and the outward spiral. Consider the time,
ts2, required by the searcher to travel the straight portion of
the search, assuming the searcher starts at Rto + Rs. This
time can be calculated as:

ts2 =
2
√

RtoRs

Vs cosφ
= 2

√
RtoRs

V 2
s − V 2

t

(12)

This time is the ratio of the distance 2
√

RtoRs, shown
in Fig. 7, to the velocity of the searcher parallel to this
line segment. The radius of the searcher immediately after
travelling the straight maneuver, Rp2, can be calculated:

Rp2 = Rto −Rs + Vtts2 (13)

The radius of the searcher after the spiral maneuver can
then be calculated by integrating Eqs. 10 and 11 :

Rp(θf) = Rp2 exp

(
(θf − β)Vt√

V 2
s − V 2

t

)
(14)

where θf = 2π in the case of a single searcher, and β,
illustrated in Fig 7, is the angle of the target set traversed
during the straight maneuver:

β = cos−1

(
Rto −Rs

Rto + Rs

)
(15)
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Fig. 7. Calculating length of straight section.

The radius of the largest boundable circle, using the proposed
spiral search can then be calculated by enforcing that the
searcher finishes a cycle of the search where it started:

Rs(θf) = R∗
to + Rs. (16)

Combining Eqs. 12 - 16 yields an expression that can be
solved for R∗

to:

R∗
to + Rs =

(
R∗

to −Rs + 2Vt

√
R∗

toRs

V 2
s − V 2

t

)
∗

exp

(
Vt (θf − cos−1 ((R∗

to −Rs)/(R∗
to + Rs)))√

V 2
s − V 2

t

)
(17)

For Vs = 20, Vt = 1, and Rs = 100, a circular pattern
can bound R∗

to = 536, while the proposed strategy can bound
R∗

to = 625. The theoretical upper bound from Eq. 6 is 636.

IV. CIRCULAR BARRIERS AGAINST INTRUDERS

The third problem considered is how to prevent an intruder
from entering a circular region without being detected. This
problem is essentially the reverse of the circular barrier
problem described above. Assuming the target is initially
outside the circle Rto, and the searcher is inside of this circle
with its sensor tangent to Rto, we explore how the searcher
should travel to guarantee that the intruders’s minimum
distance from the center of the circle is bounded. The goal is
to find a strategy to guarantee bounding for the largest initial
circle R∗

to. For all circles smaller than this, the bounding
strategy should also provide a method to expand the cleared
area to its maximum.

The strategy of Section III can be reversed to expand
the cleared area. This is done by defining the lead angle
φ toward the center of the cleared region, which produces
inward spirals rather than outward spirals. This strategy is
illustrated in Fig .8. The application of this strategy will
result in a stable final trajectory, analogous to a stable limit
cycle, around the cleared area. For large initial radii of the
cleared area, Rto, the cleared area will shrink since the
searcher cannot clear the perimeter fast enough. For small
initial radii of the cleared area, the cleared area will be
enlarged since the searcher can clear area faster than the
possible invader motion fills it in. This existence of a stable
final trajectory is different from the unstable trajectories of
III. When searching for a target on the inside of an expanding
circular region, if Rto is larger than R∗

to, the target set will
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Fig. 8. Proposed pattern for intruders.

increase indefinitely, while if Rto is smaller than R∗
to, the

target set will shrink to zero area. This is analogous to an
unstable limit cycle.

V. MULTIPLE SEARCHERS

The strategies described above can be easily extended
to multiple searchers. For the search of the corridor [11],
multiple searchers can travel abreast, effectively increasing
the width of the search sensor. Unlike the corridor case, for
the search of the expanding or collapsing circular regions,
multiple searchers cannot travel abreast unless they are
able to vary their velocities so that their angular velocities
around the perimeter are equal. Considering the search of
the expanding circle for multiple searchers, Eq. 9 becomes:

˙AT S = VtPT S −
n∑

i=1

VsLS⊥i (18)

where, n is the number of searchers. This suggests that the
same three properties outlined in Section III for a single
search apply to the multiple searcher case. If the multiple
searchers are equally spaced around the perimeter of the
target set, the simplified problem of traversing an expanding
circle for a single searcher shown in Fig. 3 can be modified
to find the optimal path for a single searcher to travel from
θ = 0 with respect to the expanding circle to θ = 2π/n.
Thus, the same control law from the single vehicle case is
directly applicable to the multiple vehicle case. This strategy
will produce a target set shape similar to Fig. 5, only instead
of a single straight line section, there will be a straight
line for each searcher. This is illustrated in Fig. 9 which
illustrates three searchers in the expanding circle case. In
order to calculate R∗

to for multiple searchers, Eq. 14 can be
modified by setting θf = 2π/n. This imposes the constraint
that each searcher will finish the cycle where the searcher
in front of it started. In order to further study the effects of
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Fig. 9. Search with multiple searchers.
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cooperating searchers, we define a cooperation gain, κ(n):

κ(n) =
R∗

to(n)
nR∗

to(1)
(19)

where R∗
to(n) is the maximum boundable radius with n

searchers.
Figure 10 illustrates, that κ(n) is monotonically increasing

signifying that n searchers can bound a circle with a radius
greater than n times the radius that can be bound by a single
searcher. Further, as n increases, κ(n) approaches the ratio
of the theoretical upper bound in Eq. 6 to R∗

to(1):

lim
n→∞

κ(n) =
RsVs

πVt

[R∗
to(1)]−1 (20)

Thus, as the number of searchers increases,the maximum
boundable radius approaches the theoretical upper bound. It
should also be noted that since the radius of the maximum
boundable circle is roughly proportional to the number of
searchers, the maximum boundable area is roughly propor-
tional to the square of the number of searchers.

VI. CONCLUSIONS

Guaranteed strategies for several problems of search in the
two-dimensional plane for a mobile intruder or evader have
been presented. The proposed strategies make no assump-
tions about the motion of the evader, and guarantee that the
searcher will travel within sensor range of the evader for
any trajectory of the evader. The three problem formulations
studied include the search for mobile targets through a
channel bounded by parallel lines, the search for or bounding
of a mobile target which starts inside of a circular region,
and the prevention of a mobile target from entering a circular
region. While no optimality proof for search of the circular
regions exist, the proposed strategies are shown to perform
close to a theoretical bound on the problem. The application
of the strategy for multiple searchers is also presented.
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